273 research outputs found

    Practical free-space quantum key distribution over 1 km

    Full text link
    A working free-space quantum key distribution (QKD) system has been developed and tested over an outdoor optical path of ~1 km at Los Alamos National Laboratory under nighttime conditions. Results show that QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.Comment: 5 pages, 2 figures, 2 tables. Submitted to Physics Review Letters, May 199

    LSPR properties of metal nanoparticles adsorbed at a liquid–liquid interface

    Get PDF
    Unlike the solid–air and solid–liquid interfaces, the optical properties of metal nanoparticles adsorbed at the liquid–liquid interface have not been theoretically exploited to date. In this work, the three dimensional finite difference time domain (3D-FDTD) method is employed to clarify the localized surface plasmon resonance (LSPR) based optical properties of gold nanoparticles (NPs) adsorbed at the water–oil interface, including near field distribution, far field absorption and their relevance. The LSPR spectra of NPs located at a liquid–liquid interface are shown to differ significantly from those in a uniform liquid environment or at the other interfaces. The absorption spectra exhibit two distinct LSPR peaks, the positions and relative strengths of which are sensitive to the dielectric properties of each liquid and the exact positions of the NPs with respect to the interface. Precise control of the particles’ position and selection of the appropriate wavelength of the excitation laser facilitates the rational design and selective excitation of localized plasmon modes for interfacial NPs, a necessary advance for the exploration of liquid–liquid interfaces via surface enhanced Raman spectroscopy (SERS). According to our calculations, the SERS enhancement factor for Au nanosphere dimers at the water–oil interface can be as high as 107–109, implying significant promise for future investigations of interfacial structure and applications of liquid–liquid interfaces towards chemical analysis

    The Small Conductance Calcium Activated Potassium Current Modulates the Ventricular Escape Rhythm in Normal Rabbit Hearts

    Get PDF
    Background The apamin-sensitive small-conductance calcium-activated K (SK) current (IKAS) modulates automaticity of the sinus node; IKAS blockade by apamin causes sinus bradycardia. Objective To test the hypothesis that IKAS modulates ventricular automaticity. Methods We tested the effects of apamin (100 nM) on ventricular escape rhythms in Langendorff perfused rabbit ventricles with atrioventricular (AV) block (Protocol 1) and on recorded transmembrane action potential (TMP) of pseudotendons of superfused right ventricular (RV) endocardial preparations (Protocol 2). Results All preparations exhibited spontaneous ventricular escape rhythms. In Protocol 1, apamin decreased the atrial rate from 186.2±18.0 bpm to 163.8±18.7 bpm (N=6, p=0.006) but accelerated the ventricular escape rate from 51.5±10.7 to 98.2±25.4 bpm (p=0.031). Three preparations exhibited bursts of nonsustained ventricular tachycardia (NSVT) and pauses, resulting in repeated burst-termination pattern. In Protocol 2, apamin increased the ventricular escape rate from 70.2±13.1 to 110.1±2.2 bpm (p=0.035). Spontaneous phase 4 depolarization was recorded from the pseudotendons in 6 of 10 preparations at baseline and in 3 in the presence of apamin. There were no changes of phase 4 slope (18.37±3.55 vs. 18.93±3.26 mV/s, p=0.231, N=3), but the threshold of phase 0 activation (mV) reduced from -67.97±1.53 to -75.26±0.28 (p=0.034). Addition of JTV-519, a ryanodine receptor 2 (RyR2) stabilizer, in 5 preparations reduced escape rate back to baseline. Conclusions Contrary to its bradycardic effect in the sinus node, IKAS blockade by apamin accelerates ventricular automaticity and causes repeated NSVT in normal ventricles. RyR2 blockade reversed the apamin effects on ventricular automaticity

    Stochastic processes with finite correlation time: modeling and application to the generalized Langevin equation

    Full text link
    The kangaroo process (KP) is characterized by various forms of the covariance and can serve as a useful model of random noises. We discuss properties of that process for the exponential, stretched exponential and algebraic (power-law) covariances. Then we apply the KP as a model of noise in the generalized Langevin equation and simulate solutions by a Monte Carlo method. Some results appear to be incompatible with requirements of the fluctuation-dissipation theorem because probability distributions change when the process is inserted into the equation. We demonstrate how one can construct a model of noise free of that difficulty. This form of the KP is especially suitable for physical applications.Comment: 22 pages (RevTeX) and 4 figure

    Existence theorems in the geometrically non-linear 6-parametric theory of elastic plates

    Full text link
    In this paper we show the existence of global minimizers for the geometrically exact, non-linear equations of elastic plates, in the framework of the general 6-parametric shell theory. A characteristic feature of this model for shells is the appearance of two independent kinematic fields: the translation vector field and the rotation tensor field (representing in total 6 independent scalar kinematic variables). For isotropic plates, we prove the existence theorem by applying the direct methods of the calculus of variations. Then, we generalize our existence result to the case of anisotropic plates. We also present a detailed comparison with a previously established Cosserat plate model.Comment: 19 pages, 1 figur

    Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    Full text link
    Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic evidence of the Fermi arcs from two complementary surface sensitive probes - ARPES and STS. A comparison of the calculated band structure for T_d and 1T' phase to identify the topological Fermi arcs in the T_d phase is also included in the supplementary informatio

    Effect of noise on coupled chaotic systems

    Get PDF
    Effect of noise in inducing order on various chaotically evolving systems is reviewed, with special emphasis on systems consisting of coupled chaotic elements. In many situations it is observed that the uncoupled elements when driven by identical noise, show synchronization phenomena where chaotic trajectories exponentially converge towards a single noisy trajectory, independent of the initial conditions. In a random neural network, with infinite range coupling, chaos is suppressed due to noise and the system evolves towards a fixed point. Spatiotemporal stochastic resonance phenomenon has been observed in a square array of coupled threshold devices where a temporal characteristic of the system resonates at a given noise strength. In a chaotically evolving coupled map lattice with logistic map as local dynamics and driven by identical noise at each site, we report that the number of structures (a structure is a group of neighbouring lattice sites for whom values of the variable follow certain predefined pattern) follow a power-law decay with the length of the structure. An interesting phenomenon, which we call stochastic coherence, is also reported in which the abundance and lifetimes of these structures show characteristic peaks at some intermediate noise strength.Comment: 21 page LaTeX file for text, 5 Postscript files for figure

    Neuroimaging at 7 Tesla: a pictorial narrative review

    Get PDF
    Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders

    Isospin-tracing: A probe of non-equilibrium in central heavy-ion collisions

    Get PDF
    Four different combinations of 4496^{96}_{44}Ru and 4096^{96}_{40}Zr nuclei, both as projectile and target, were investigated at the same bombarding energy of 400AA MeV using a 4π4 \pi detector. The degree of isospin mixing between projectile and target nucleons is mapped across a large portion of the phase space using two different isospin-tracer observables, the number of measured protons and the t/3He{\rm t}/^{3}{\rm He} yield ratio. The experimental results show that the global equilibrium is not reached even in the most central collisions. Quantitative measures of stopping and mixing are extracted from the data. They are found to exhibit a quite strong sensitivity to the in-medium (n,n) cross section used in microscopic transport calculations.Comment: 4 pages RevTeX, 3 figures (ps files), submitted to Phys. Rev. Let
    corecore